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Abstract. We develop an extension of the well-known BCS-theory to systems with trapped fermionic
atoms. The theory fully includes the quantized energy levels in the trap. The key ingredient is to model
the attractive interaction between two atoms by a pseudo-potential which leads to a well defined scattering
problem and consequently to a BCS-theory free of divergences. We present numerical results for the BCS
critical temperature and the temperature dependence of the gap. They are used as a test of existing
semi-classical approximations.

PACS. 05.30.Fk Fermion systems and electron gas – 03.75.Fi Phase coherent atomic ensembles; quantum
condensation phenomena – 32.80.Pj Optical cooling of atoms; trapping

1 Introduction

Considerable interest in the field of ultracold atomic gases
has been sparked by the achievement of Bose-Einstein con-
densation in the bosonic systems 87Rb, 23Na and 7Li [1].
Recently, several experimental groups have extended these
experiments to the case of trapped fermions [2]. As a first
step, it is attempted to achieve a degenerate Fermi gas.
In a possible next step, the celebrated Bardeen-Cooper-
Schrieffer (BCS) phase transition could be observed. A
promising candidate for achieving this transition is the
isotope 6Li: by trapping 6Li in two hyperfine states, one
can take advantage of the strong (attractive) interactions
due to s-wave scattering between atoms in different hy-
perfine states to achieve pair creation at a reasonably high
temperature [3].

BCS-pairing occurs in a multitude of physical systems
(e.g. electrons in metals, electron-hole exciton systems
and neutron-proton systems) which share the character-
istic that the formation of bound states (Cooper pairs)
between the strongly coupled constituents is energetically
favorable [4]. For ultracold atoms in traps, the interac-
tions are much better-known than in most of the above
mentioned systems [5]. Therefore, the achievement of a
superfluid state in these systems opens up the possibility
of testing our theoretical models, in particular, the valid-
ity of the BCS theory itself. Furthermore, the interaction
strength and the density of the gas are experimentally
tunable which, in principle, makes it possible to study the
crossover from BCS pairing to Bose-Einstein condensation
of bosonic pairs [6].

To describe experiments with trapped fermionic
atoms, one has to extend present theories (i) to include
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the discrete nature of the quantum energy levels of the
particles in the trap, and (ii) to take into account the in-
teractions specific to the atomic case. We consider a model
of trapped fermions with two internal states. At low en-
ergies, the p-wave interaction between atoms in the same
internal state is negligible compared to the s-wave interac-
tion between atoms in different internal states. The latter
interaction is characterized at low energies and for dilute
gases (kFre < 1, where re is the effective range of the in-
teraction, kF the Fermi wavevector) by a single parameter,
the scattering length a. In order to achieve pair formation
the interaction has to be strong; here we assume |a| � re,
a so-called zero-energy resonance [7]. In this case, an ex-
cellent model for the atomic interactions is provided by
the pseudo-potential discussed in [8]. This model poten-
tial allows us to obtain an extension of the BCS theory to
inhomogeneous atomic systems.

We use this theory to calculate various observables
including the critical BCS temperature and the density
distribution of the gas. We predict that this transition
occurs at experimentally accessible densities and temper-
atures, due to the large negative scattering length for 6Li
atoms. We also carefully compare the results of this gen-
eral theory to those of a semi-classical theory based on
the Thomas-Fermi approximation [9] (see also [10]). In
that way, we establish a region of validity of this approx-
imation.

2 Hamiltonian and BCS equations of motion

Our model Hamiltonian for the trapped atomic gas in-
cludes only the dominant s-wave interactions between
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atoms in different internal states:

Ĥ =
∑
σ

∫
d3rψ†σ(r)H0ψσ(r)

+
1
2

∑
σ

∫
d3Rd3rd3r′〈r′|V̂RM|r〉

× ψ†σ(R +
r′

2
)ψ†−σ(R− r′

2
)ψ−σ(R− r

2
)ψσ(R +

r
2

). (1)

Here the fermion field operator ψσ(r) annihilates a fermion
in the position eigenstate |r〉 with an internal state σ =
+,−. The single particle Hamiltonian

H0 = − ~
2

2m
∇2 + U0(r)− µ (2)

includes the trapping potential U0(r) and the chemical po-
tential µ. We assume there is an equal number of particles
Nσ in each state and hence a single chemical potential
µ [11]. In equation (1), we keep a general non-local in-
teraction V̂RM assuming only that it does not affect the
center of mass motion R of the interacting particles.

We follow the steady-state mean-field approach of BCS
theory: the quartic terms of Ĥ are replaced by quadratic
terms taking into account all possible binary contractions
in the spirit of Wick’s theorem [4]. This leads to linear
equations for the field operators [12]:

i~
d
dt
ψ±(r) = H0ψ±(r) +

∫
d3r′W (r, r′)ψ±(r′)

±
∫

d3r′∆(r, r′)ψ†∓(r′). (3)

The Hartree field W (r, r′) is defined as:

W (r, r′) ≡
∫

d3y〈r− r′ +
y
2
|V̂RM|r′ − r +

y
2
〉

×〈ψ†±(r′ − y
2

)ψ±(r− y
2

)〉 (4)

(W is the same for both internal states). The pairing field
describes correlations due to Cooper pairing:

∆(r, r′) ≡
∫

d3y〈r− r′|V̂RM|y〉

×〈ψ−
(

r′ + r
2
− y

2

)
ψ+

(
r′ + r

2
+

y
2

)
〉. (5)

Equations (3, 4, 5) form a non-linear self-consistent prob-
lem.

3 BCS theory for atoms: the pseudo-potential

The interaction between atoms is often approximated in
the center of mass frame by a contact potential, that is
V̂RM = 4πa~2δ(r̂)/m. However, this approximation leads
to an ultra-violet divergent theory. This reflects the fact

that the contact interaction is an effective low-energy in-
teraction invalid for high energies. One way to remove
this divergence is to introduce an energy cut-off in the
interaction. This approach has been used to describe su-
perconductivity in metals where a natural cut-off in the
form of the Debye frequency exists. Another method is to
express the coupling constant in terms of the two-body
scattering matrix obtained from the Lippman-Schwinger
equation. This renormalization scheme has been imple-
mented in the literature only in the homogeneous case [6].
Here, we put forward a technique valid also in the inhomo-
geneous case. We use the pseudo-potential V̂RM [8] defined
for an arbitrary function φ(r) by

〈r|V̂RM|φ〉 ≡ gδ(r)∂r[rφ(r)] (6)

with g = 4πa~2/m. We first note that in contrast to the
usual contact potential the pseudo-potential leads to a
well defined two-body scattering problem; the scattering
state in the center of mass frame for two particles with a
relative momentum p = (p1−p2)/2 and a relative position
r = r1 − r2 is

φ(r) = eip·r/~ − a

1 + ipa/~
eipr/~

r
· (7)

For a potential of finite range re the above form, diverg-
ing as 1/r for r → 0, is only valid for r � re and for
pre/~� 1 [7]. The pseudo-potential has an effective range
re = 0; this does not lead to any mathematical problem
as the 1/r divergence is regularized by the operator ∂r[r·]
in equation (6).

We now introduce the pseudo-potential of equation (6)
in the equations of motion equation (3) [13]. As it in-
troduces a δ(r), we have ∆(r, r′) = δ(r − r′)∆(R) and
W (r, r′) = δ(r − r′)W (R), with R = (r + r′)/2, so that
equation (3) becomes local:

i~
d
dt
ψ±(R) = [H0 +W (R)]ψ±(R)±∆(R)ψ†∓(R). (8)

The regularizing operator ∂r[r·] on the right-hand side of
equation (6) plays no role for the self-consistent Hartree
field, which is given by

W (R) ≡ g〈ψ†σ(R)ψσ(R)〉. (9)

The pertinence of the regularizing operator becomes clear
for the pairing field: using equation (6) with φ(y) =
〈ψ− (R− y/2)ψ+ (R + y/2)〉 we obtain

∆(R) ≡ −g lim
r→0

∂r[r〈ψ+(R +
r
2

)ψ−(R− r
2

)〉]. (10)

Here the operator ∂r[r·] is necessary as the expecta-
tion value 〈ψ+ψ−〉 in equation (10) diverges as 1/r for
r → 0. To see this, we calculate from equation (8) the
time derivative of 〈ψ+ψ−〉 which vanishes as the system
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is in a steady state:

0 =
[
−~

2

m
[∇2

r +
1
4
∇2

R] + U(R− 1
2
r) + U(R +

1
2
r)
]

×〈ψ+(R +
r
2

)ψ−(R− r
2

)〉

+∆(R +
1
2
r)〈ψ†−(R +

r
2

)ψ−(R− r
2

)〉

+∆(R− 1
2
r)〈ψ†+(R− r

2
)ψ+(R +

r
2

)〉 −∆(R)δ(r)

(11)

where U = U0 + W − µ. The presence of δ(r) imposes a
1/r divergence in the pairing field (∇2(1/r) = −4πδ(r)):

〈ψ+(R +
r
2

)ψ−(R− r
2

)〉 =
m

4π~2r
∆(R) + Freg(R) +O(r). (12)

The 1/r behavior of the pairing field could actually be ex-
pected from the 1/r behavior of the two-body scattering
wavefunction equation (7). Since the pseudo-potential re-
moves this divergence, equation (10) yields the gap equa-
tion:

∆(R) = −gFreg(R). (13)

4 Gap equation in the homogeneous case

We now compare the prediction of the present theory with
the standard theory for a homogeneous system. In this
case U0 ≡ 0, and W , ∆ do not depend on the position
R. The pairing field for a temperature T can then be ex-
pressed as an integral (see [4]):

〈ψ+(R +
r
2

)ψ−(R− r
2

)〉 =
∆

2

∫
d3k

(2π)3

eik·r

Ek
[1− 2f(Ek)]

(14)

with

f(E) = [exp(E/kBT ) + 1]−1 (15)

and Ek = [∆2+(~2k2/2m−µ̃)2]1/2 where µ = µ̃+W . This
integral diverges for r = 0 as in equation (12). To calculate
Freg we add and subtract from 〈ψ+ψ−〉 the integral of a
function having the same large k behavior as the integrand
in equation (14), that is we add and subtract Gµ̃(r)∆/2,
where Gµ̃(r) is the single free particle Green’s function:

Gµ̃(r) =
∫

d3k

(2π)3

eik·r[
~2k2

2m
− µ̃− i0+

]
=

m

2π~2

eik̃Fr

r
(16)

with ~2k̃F
2
/2m = µ̃. The contribution of Gµ̃∆/2 to Freg

is now easy to calculate. The remaining integral 〈ψ+ψ−〉−

Gµ∆/2 converges for r → 0. Using 1/(X+iε) = P(1/X)−
iπδ(X), we finally obtain:

Freg(R) =
∆

2

∫
d3k

(2π)3

1− 2f(Ek)
Ek

−P

 1
~2k2

2m
− µ̃


 .

(17)

The gap equation ∆ = −gFreg coincides with the gap
equation obtained by renormalizing via the Lippman-
Schwinger equation [6].

5 Gap equation in a trap

We now turn to the inhomogeneous case, for which we
have to use a numerical approach. The atoms are trapped
in the potential U0(r), so that the single particle Hamil-
tonian H0 has a purely discrete spectrum E0

η , where η
is a set of quantum numbers. Following the Bogoliubov
technique [4], we expand the field operator in eigenmodes
(uη, vη) [14]:

ψ+(r) =
∑
η

bη,+uη(r) − b†η,−v∗η(r), (18)

ψ−(r) =
∑
η

bη,−uη(r) + b†η,+v
∗
η(r). (19)

The mode functions (uη, vη) solve the eigenvalue problem:

Eηuη(R) = [H0 +W (R)]uη(R) +∆(R)vη(R)

Eηvη(R) =−[H0+W (R)]vη(R)+∆∗(R)uη(R). (20)

with Eη positive. The mode functions are normalized as
〈uη|uη〉+ 〈vη|vη〉 = 1. The operators bη,±, b

†
η,± then anni-

hilate and create an elementary excitation of energy Eη,
respectively. They satisfy the usual fermionic anticommu-
tation relations.

For thermal equilibrium, the only non-vanishing aver-
ages of a product of two elementary excitation operators
are 〈b†η,±bη,±〉 = 1− 〈bη,±b†η,±〉 = f(Eη), where the Fermi
distribution function is given in equation (15). The pairing
function is therefore given by

〈ψ+(R +
r
2

)ψ−(R− r
2

)〉 =∑
η

uη(R +
r
2

)v∗η(R− r
2

)[1− f(Eη)]

−
∑
η

v∗η(R +
r
2

)uη(R− r
2

)f(Eη). (21)

A similar expression holds for W :

W (R) =
∑
η

|uη|2(R)f(Eη) + |vη|2(R)[1− f(Eη)]. (22)
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Inspired by the homogeneous case, we introduce the single
particle Green’s function

Gµ(R, r) ≡ 〈R +
r
2
| 1
H0
|R− r

2
〉. (23)

To determine the divergence of Gµ(R, r) for r → 0 we use
the defining equation for a Green’s function:[
− ~

2

2m
∇2

r1
+ U0(r1)− µ

]
〈r1|

1
H0
|r2〉 = δ(r1 − r2). (24)

As ∇2
r1

(1/|r1 − r2|) = −4πδ(r1 − r2) this imposes a di-
vergence of 〈r1|H−1

0 |r2〉 as m/2π~2|r1 − r2| in the limit
r1 → r2, irrespective of the trapping potential U0 and of
the position r2. In the limit r → 0 we then split Gµ in a
diverging part and a regular part:

Gµ(R, r) =
m

2π~2r
+Greg

µ (R) +O(r). (25)

From equation (12) we see that the quantity
∆(R)Gµ(R, r)/2 diverges in the limit r → 0 in ex-
actly the same way as the pairing field. Therefore
we subtract and add from equation (21) the quantity
∆(R)Gµ(R, r)/2:

〈ψ+(R +
r
2

)ψ−(R− r
2

)〉 =[
〈ψ+(R +

r
2

)ψ−(R− r
2

)〉 − 1
2
∆(R)Gµ(R, r)

]
+

1
2
∆(R)Gµ(R, r). (26)

The second line of equation (26) has a 1/r diverging
part eliminated by the pseudopotential, and a regular
part determined from equation (25). The first line of
equation (26) is free of 1/r divergences; we express
Gµ(R, r) as an infinite sum over the eigenvectors |φ0

η〉
of the single particle Hamiltonian H0 and we use equa-
tion (21) to get the gap equation:

∆(R) = −g
∑
η

{
uη(R)v∗η(R)[1− 2f(Eη)]

− ∆(R)
2
|φ0
η(R)|2

E0
η

}
− g

2
∆(R)Greg

µ (R). (27)

In a practical numerical calculation, the infinite sum in
equation (27) is, of course, replaced by a finite one. The
regular part of the Green’s function has to be calculated
numerically once, for a given value of the chemical poten-
tial µ.

6 Numerical results for a gas in a harmonic
trap

Equation (20) for the (uη, vη)’s, the self-consistent deter-
mination of ∆(R) given by equation (27) and of W (R)
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Fig. 1. The critical temperature kBTc/~ω, where ω is the trap
frequency, as a function of the number of particles Nσ in each of
the internal states for g/(l3~ω) = −1 where l =

p
~/mω. The

solid line is obtained from numerical solution of the linearized
gap equation. The dashed line depicts the result of the TFA in
the parameter space where it is valid (i.e. kBTc � ~ω).

given by equation (22) constitute a non-linear problem.
To obtain the critical temperature Tc, one linearizes this
problem for small ∆(R) which leads to the integral equa-
tion∆(s) =

∫
d3rM(s, r)∆(r). The temperature for which

the highest eigenvalue λ of the kernel M crosses 1, is then
Tc [4]. The kernel is given as

M(S,R) = lim
r→0

[
K(S +

r
2
,R− r

2
)− δ(R− S)

m

4π~2r

]
(28)

with [4]

K(S +
r
2
,R− r

2
) = −g

2

∑
η,η′

tanh(β ξη2 ) + tanh(β ξη′2 )
ξη + ξη′

× φ∗η(R− r
2

)φ∗η′(R−
r
2

)φη(S +
r
2

)φη′(S +
r
2

). (29)

Here, φη(r) = 〈r|φη〉 are the single particle eigenstates of
H0 +W (r) with energy ξη.

In the experiments with atomic gases the particles are
kept in harmonic traps; for simplicity we have assumed
an isotropic harmonic trap U0(r) = (1/2)mω2r2 in our
calculations. We give in the Appendix a derivation of the
regular part Greg

µ of the single particle Green’s function
for this case. We have performed a numerical diagonal-
ization of the kernel M for a varying chemical poten-
tial µ. For the interaction, we took the parameters of 6Li
that is a = −1140 Å [15] and a trapping frequency of
820 Hz which gives g/(l3~ω) ' −1 with l = (~/mω)1/2. In
Figure 1, we plot Tc as a function of Nσ. As ~ω/kB '
40 nK the calculated critical temperature seems experi-
mentally obtainable.
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Fig. 2. Gap function ∆(R)/~ω as function of R/l for g =

−l3~ω where l =
p
~/mω. We have µ = 31.5~ω (yielding Nσ '

8000) and kBT = kBTc/10 = 0.28~ω. Solid line: numerical
solution of the complete BCS theory. Dashed line: TFA.

To obtain the spatial structure of the gap function
∆(R) for arbitrary temperatures, we solve numerically
the whole self-consistent non-linear problem. We plot in
Figure 2 the gap function as function of R for a relatively
large number of particles and a temperature much smaller
than Tc. In this low temperature regime the Cooper pair-
ing takes place over the whole trapped cloud.

In both of the above figures, we also compare with the
Thomas-Fermi approximation (TFA), in which the system
is treated as being locally homogeneous [9], neglecting the
discrete nature of the energy spectrum. There are two con-
ditions for the validity of the TFA. First, the correlation
length between the unpaired fermions ' 1/kF should be
much shorter than the spatial radius rTF =

√
2µ/mω2

of the cloud, requiring µ � ~ω. Also, the size ξ of the
Cooper pairs must be much smaller than rTF making
a local theory for the pairing reasonable. For T = 0,
kFξ ' µ/∆T=0 ' µ/kBTc where we have used ∆T=0 =
1.76kBTc [4] valid in the TFA. For T = Tc, we have the
same estimate kFξ ' µ/kBTc. For any T below Tc the
inequality ξ � rTF then reduces to the requirement that
the critical temperature must be much larger than the
trap level spacing for the TFA to work; i.e. kBTc/~ω � 1.

We see from Figures 1 and 2 that the agreement with
the TFA is reasonably good for kBTc > ~ω. To determine
the region of validity of the TFA more clearly, we plot
in Figure 3 the quantity S ≡

∫
d3R ∆(R) as a function

of temperature. In Figure 3a, we chose a small number
of trapped particles; in Figure 3b a much larger num-
ber of particles are trapped. The temperature where the
gap, that is S, vanishes, determines Tc. For (a), we find
kBTc = 0.13~ω. This value for Tc is confirmed in Figure 4,
where we plot the highest eigenvalue of the kernel M(r, s)
given in equation (28) as a function of T . We see that the
eigenvalue crosses the value 1 at Tc ' 0.13~ω/kB. Since
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(b)
Fig. 3. Size of the gap parameter in units of ~ωl3 as function of
kBT/~ω for a scattering length g = −l3~ω (with l =

p
~/mω),

and for (a) µ = 11.5~ω yielding Nσ ' 300, and (b) µ = 31.5~ω
yielding Nσ ' 8000. Solid line: numerical solution of the com-
plete BCS theory. Dotted line in (b): TFA.

the value of the critical temperature is relatively small in
the sense that kBTc/~ω � 1, the TFA breaks down for this
set of parameters; it yields a S which is larger by two or-
ders of magnitude as compared to the result in Figure 3a.
For the parameters in Figure 3b we have kBTc = 2.8~ω
and the agreement with the TFA is reasonably good as
expected.

7 Conclusion

In conclusion, we have implemented a BCS theory for
a dilute gas of weakly interacting fermionic atoms in
a trap. It reproduces the well-known regularized gap
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Fig. 4. The highest eigenvalue λ of the kernel M(s, r) as a
function of kBT/~ω for g = −l3~ω and µ = 11.5~ω.

equation for the homogeneous case, and it provides a
method for achieving a finite theory for a trapped gas tak-
ing into account the discrete nature of the normal state
trap levels. Based on this theory, we intend in a next
step to include time dependence in our treatment to study
the response of the system to external perturbations, in a
search for observable signatures of the BCS transition.
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Appendix: Green’s function for the harmonic
oscillator

In this part we calculate the regular part Greg
µ of the single

particle Green’s function for the 3D isotropic harmonic
oscillator U0(r) = (1/2)mω2r2. For simplicity we use ~ω
as a unit of energy and (~/mω)1/2 as a unit of length,
which amounts to setting m = ~ = ω = 1.

The Green’s function is well defined in the case of a
chemical potential µ differing from the energies of the
bound states in the trap. Here we assume that µ 6=
n + (1/2), where n is any positive integer. We can then
use the following integral representation of the resolvant
of the harmonic oscillator Hamiltonian H0 = −(1/2)∇2 +
(1/2)r2 − µ:

1
H0

=
i

1 + e2iπµ

∫ 2π

0

dt e−iH0t (A.1)

as can be checked directly in the eigenbasis of H0.

The Feynman propagator of the 1D harmonic oscillator
is given by [16]:

〈x2|e−
i
2 [−∂2

x+x2]t|x1〉 =
e−iπ/4√
2π| sin t|

eiS

for 0 < t < π (A.2)

=
e−3iπ/4√
2π| sin t|

eiS

for π < t < 2π (A.3)

where S = (x2
1 +x2

2)/(2 tan t)−x1x2/ sin t is the action of
the classical path linking (x1, 0) to (x2, t).

We apply this result to the 3D case; we split the inte-
gration over t in equation (A.1) in the two intervals [0, π]
and [π, 2π]; in the second integral we change the integra-
tion variable from t to 2π − t. Setting u = 1/

√
tan(t/2)

we obtain

Gµ(R, r) =
√

2
(2π)3/2

Re
[

e−iπ(µ+1/4)

cosπµ

×
∫ +∞

0

du F (u;R)eir2u2/4

]
(A.4)

where we have introduced the function

F (u;R) = (1 + u−4)1/2e2iµ arctan(1/u2)e−iR2/u2
. (A.5)

If we substitute r by 0 in equation (A.4) we get a integral
diverging in u = +∞, as F (u;R) converges to 1 for u →
+∞. We therefore split F (u;R) as [F (u;R) − 1] + 1; the
difference F (u;R) − 1 tends to 0 for u → ∞ as 1/u2, so
that the integral of [F (u;R)− 1] now converges and r can
be set to 0. The contribution of the constant term 1 can
be calculated exactly from the known integral∫ +∞

0

dρ eiρ2
=
√
π

2
eiπ/4. (A.6)

We are therefore led to the following r-expansion:

Gµ(R, r) =
1

2πr

+
√

2
(2π)3/2

Re
[

e−iπ(µ+1/4)

cosπµ

∫ +∞

0

du[F (u;R)− 1]
]

+O(r).

(A.7)

Numerically we split the integration over u in the two in-
tervals [0, 1] and [1,+∞[. In the first interval we introduce
the change of variables v = 1/u. We are then facing inte-
grals with rapidly (R � 1) oscillating integrands, of the
type:

I =
∫ U

1

du G(u)e−iR2/u2
(A.8)

J =
∫ V

1

dv H(v)e−iR2v2
(A.9)
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where G, H are slowly varying functions. We split the
interval of integration in n intervals of size δ = (U − 1)/n
and use the approximate formula:

I '
n−1∑
k=0

1
2

[G(uk) +G(uk+1)]
∫ uk+1

uk

du e−iR2/u2
(A.10)

with uk = 1 + kδ. Similar expressions hold for J . The in-
tegrals over u in equation (A.10) can be expressed exactly
in terms of the complementary error-function with a com-
plex argument. The missing piece from U , V to +∞ is
approximated analytically from an asymptotic expression
of G(u),H(v).
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